Development of a CA-FVM Model with Weakened Mesh Anisotropy and Application to Fe–C Alloy

نویسندگان

  • Weiling Wang
  • Sen Luo
چکیده

In order to match the growth of the decentered square and the evolution of the interface cell in a two-dimensional cellular automaton-finite volume method (CA-FVM) model with decentered square algorithm, the present work first alters the determination of the half length of the square diagonal according to the preferential growth orientation, and then modifies the interface evolution considering the contribution of neighboring solid cells. Accordingly, the sharp interface (physical basis of the model), the growth orientation, and the growth consistence are reasonably guaranteed. The CA-FVM model presents some capabilities in predicting the free growth of equiaxed dendrites. With the increase of the cooling rate, the solidification structure gradually changes from cell to dendrite, and the solute segregation becomes more severe. Meanwhile, the predicted solute segregation under the intensive cooling condition is consistent with the calculation by Ueshima model at the initial solidification stage. The predicted competition behavior of columnar dendrites is qualitatively consistent with the observation in the continuously cast steel billet. The predicted dendrite arm spacings are close to the measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation and Simulation of Cellular Automaton Model for Dendritic Growth during the Solidification of Fe–C Binary Alloy with Fluid Flow

Based on our previous developed 2D CA-FVM model, where the transport phenomna and kinetics conditions of solute-driven dendritic growth occurred in the solidification process with fluid flow were totally taken into consideration, an extensive model validation and furhter model application are demonstrated here. Firstly, the flow pattern of the lid-driven cavity is well predicted and quantitativ...

متن کامل

EFFECT OF FINISH ROLLING TEMPERATURE ON MICROSTRUCTURE,TEXTURE AND PLANAR ANISOTROPY IN ALUMINUM ALLOY AA3004 SHEETS

AA3004 alloy is widely used in can making. The major concern in the production of canbodies is earing, which develop by high planar anisotropy of rolled sheet. Balance ofrecrystallisation and rolling textures together with a uniform and fine grain microstructure canminimize the earing. The effects of finish rolling temperature (FRT) on planar anisotropy,microstructure, texture development and m...

متن کامل

DEVELOPMENT OF HARDNESS IN A Fe- BASED NANO-COMPOSITE ALLOY

Achieving extreme hardness in the newly synthetic steel formed by converting from initial amorphous state to subse-quent crystalline structure –named as devitrification process- was studied in this research work. Results of TEM observa-tions and XRD tests showed that crystallized microstructure were made up four different nano-scale phases i.e., α-Fe, Fe 36 Cr12 Mo10 , Fe 3 C and Fe3 B. More, V...

متن کامل

Production of Fe-C Powders with Improved Structure

Production of Fe-C alloy powders by mechanical alloying was studied. Fe and graphite elemental powder mixtures containing 0.8 and 1.5wt.% graphite were mechanically alloyed using a planetary ball mill. The structural changes of powder particles during mechanical alloying were studied by x-ray diffractometery, scanning electron microscopy and microhardness measurements. For both compositions, me...

متن کامل

Numerical Study on Resistance of a Bulk Carrier Vessel Using CFD Method

Bulk carriers have an important role in international maritime transport. In this paper, we carried out a numerical study on a model of bulk carrier vessel and calculated total resistance of the model. A model of a bulk carrier vessel with length of 2.76 m, breadth of 0.403 m and draught of 0.173 m was selected for numerical modeling. Numerical work was done by commercial CFD software ANSY...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016